Helping You Find Full Text Journal Articles

Nov
2014

Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters.
Full Text Link Source Status
http://hub.hku.hk/bitstream/10722/207710/1/content.pdf?accep
Web SearchFound
http://www.nrronline.org/text.asp?2014/9/21/1863/145337
Publisher SiteFound
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281419PMCFound


Similar Publications

Dec
1969

Ciliary neurotrophic factor has recently been shown to promote the axonal regrowth of retinal ganglion cells into a peripheral nerve graft following an intracranial transection of the optic nerve (approximately 7 mm from the optic disc). It is unclear whether the enhancement of axonal regrowth by ciliary neurotrophic factor application correlates with the enhancement of survival of retinal ganglion cells and/or the up-regulation of expression of growth-associated protein-43 messenger RNA in retinas. The present study evaluated the regenerative capacity of retinal ganglion cells following intraorbital transection of the optic nerve (approximately 1.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
1995

The large majority of mammalian retinal ganglion cells degenerate following section of their axons in the optic nerve. It has been suggested that some axotomized retina ganglion cells die because of toxic agents produced within their immediate environment. Our hypothesis was that nitric oxide might be one of the toxic factors implicated in the death of adult retinal ganglion cells post-axotomy.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2002

Adult rat retinal ganglion cells undergo degeneration after optic nerve transection. Repeated intraocular injection of glial cell-line derived neurotrophic factor (GDNF) has been shown to be efficient in enhancing retinal ganglion cell survival following optic nerve axotomy. In the present study we evaluated the potential survival-promoting effect of adenovirally administered GDNF on axotomized retinal ganglion cells.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

Optic nerve transection results in the apoptotic cell death of the majority of retinal ganglion cells by 14 days. The neurotrophin brain-derived neurotrophic factor (BDNF) enhances survival of retinal ganglion cells. In addition, the small heat shock protein Hsp27, with its anti-apoptotic effects, may be important for neuron survival following axotomy or trophic factor withdrawal.

View Full Text PDF Listings View primary source full text article PDFs.
Back to top