Helping You Find Full Text Journal Articles

Dec
1969

Theories of decision-making and its neural substrates have long assumed the existence of two distinct and competing valuation systems, variously described as goal-directed vs. habitual, or, more recently and based on statistical arguments, as model-free vs. model-based reinforcement-learning.
Full Text Link Source Status
http://journal.frontiersin.org/article/10.3389/fpsyg.2014.01
Publisher SiteFound
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269125PMCFound


Similar Publications

Dec
1969

Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2015

Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task.

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2015

It has recently become widely appreciated that value-based decision making is supported by multiple computational strategies. In particular, animal and human behavior in learning tasks appears to include habitual responses described by prominent model-free reinforcement learning (RL) theories, but also more deliberative or goal-directed actions that can be characterized by a different class of theories, model-based RL. The latter theories evaluate actions by using a representation of the contingencies of the task (as with a learned map of a spatial maze), called an "internal model.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
2013

Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive-dependent control systems in model-based choice.

View Full Text PDF Listings View primary source full text article PDFs.
Back to top