Helping You Find Full Text Journal Articles

Jul
2017

As the application of genomic data in phylogenetics has become routine, a number of cases have arisen where alternative data sets strongly support conflicting conclusions. This sensitivity to analytical decisions has prevented firm resolution of some of the most recalcitrant nodes in the tree of life. To better understand the causes and nature of this sensitivity, we analyzed several phylogenomic data sets using an alternative measure of topological support (the Bayes factor) that both demonstrates and averts several limitations of more frequently employed support measures (such as Markov chain Monte Carlo estimates of posterior probabilities).
Full Text Link Source Status
https://academic.oup.com/sysbio/article-pdf/66/4/517/1772635
Web SearchFound
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/s
Publisher SiteFound


Similar Publications

Apr
2012

Phylogenomics offers the potential to fully resolve the Tree of Life, but increasing genomic coverage also reveals conflicting evolutionary histories among genes, demanding new analytical strategies for elucidating a single history of life. Here, we outline a phylogenomic approach using a novel class of phylogenetic markers derived from ultraconserved elements and flanking DNA. Using species-tree analysis that accounts for discord among hundreds of independent loci, we show that this class of marker is useful for recovering deep-level phylogeny in placental mammals.

View Full Text PDF Listings View primary source full text article PDFs.

Aug
2005

Several mutually exclusive hypotheses have been advanced to explain the phylogenetic position of turtles among amniotes. Traditional morphology-based analyses place turtles among extinct anapsids (reptiles with a solid skull roof), whereas more recent studies of both morphological and molecular data support an origin of turtles from within Diapsida (reptiles with a doubly fenestrated skull roof). Evaluation of these conflicting hypotheses has been hampered by nonoverlapping taxonomic samples and the exclusion of significant taxa from published analyses.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2003

Bayesian Markov chain Monte Carlo sampling has become increasingly popular in phylogenetics as a method for both estimating the maximum likelihood topology and for assessing nodal confidence. Despite the growing use of posterior probabilities, the relationship between the Bayesian measure of confidence and the most commonly used confidence measure in phylogenetics, the nonparametric bootstrap proportion, is poorly understood. We used computer simulation to investigate the behavior of three phylogenetic confidence methods: Bayesian posterior probabilities calculated via Markov chain Monte Carlo sampling (BMCMC-PP), maximum likelihood bootstrap proportion (ML-BP), and maximum parsimony bootstrap proportion (MP-BP).

View Full Text PDF Listings View primary source full text article PDFs.

Apr
2008

Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many relationships remain disputed, including those that are required to polarize key features of character evolution, and support for deep nodes is often low.

View Full Text PDF Listings View primary source full text article PDFs.
Back to top