Helping You Find Full Text Journal Articles

Search Results:

Author: Gemma L Kelly (23)


Jan
2018

The tumour suppressor gene TP53 is mutated in ~50% of human cancers. In addition to its function in tumour suppression, p53 also plays a major role in the response of malignant as well as nontransformed cells to many anticancer therapeutics, particularly those that cause DNA damage. P53 forms a homotetrameric transcription factor that is reported to directly regulate ~500 target genes, thereby controlling a broad range of cellular processes, including cell cycle arrest, cell senescence, DNA repair, metabolic adaptation and cell death.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2017

Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2018

While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2017

The ATM kinase plays critical roles in the response to DNA double-strand breaks, and can also be activated by prolonged DNA replication blocks. It has recently been proposed that replication stress-dependent ATM activation is mediated by ASCIZ (also known as ATMIN, ZNF822), an essential developmental transcription factor. In contrast, we show here that ATM activation, and phosphorylation of its substrates KAP1, p53 and H2AX in response to the replication blocking agent aphidicolin was unaffected in both immortalized and primary ASCIZ/ATMIN-deficient murine embryonic fibroblasts compared to control cells.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1.

View Full Text PDF Listings View primary source full text article PDFs.

Aug
2016

Pro-survival BCL-2 family members protect cells from programmed cell death that can be induced by multiple internal or external cues. Within the haematopoietic lineages, the BCL-2 family members BCL-2, BCL-XL and MCL-1 are known to support cell survival but the individual and overlapping roles of these pro-survival BCL-2 proteins for the persistence of individual leukocyte subsets in vivo has not yet been determined. By combining inducible knockout mouse models with the BH3-mimetic compound ABT-737, which inhibits BCL-2, BCL-XL and BCL-W, we found that dependency on MCL-1, BCL-XL or BCL-2 expression changes during B-cell development.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

Tumor-Suppressor Functions of the TP53 Pathway.

Cold Spring Harb Perspect Med 2016 05 2;6(5). Epub 2016 May 2.
Brandon J Aubrey, Andreas Strasser, Gemma L Kelly
The fundamental biological importance of the Tp53 gene family is highlighted by its evolutionary conservation for more than one billion years dating back to the earliest multicellular organisms. The TP53 protein provides essential functions in the cellular response to diverse stresses and safeguards maintenance of genomic integrity, and this is manifest in its critical role in tumor suppression. The importance of Tp53 in tumor prevention is exemplified in human cancer where it is the most frequently detected genetic alteration.

View Full Text PDF Listings View primary source full text article PDFs.

Mar
2016

Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2016

How MYC promotes the development of cancer remains to be fully understood. Here, we report that the Zn(2+)-finger transcription factor ASCIZ (ATMIN, ZNF822) synergizes with MYC to activate the expression of dynein light chain (DYNLL1, LC8) in the murine Eμ-Myc model of lymphoma. Deletion of Asciz or Dynll1 prevented the abnormal expansion of pre-B cells in pre-cancerous Eμ-Myc mice and potentiated the pro-apoptotic activity of MYC in pre-leukemic immature B cells.

View Full Text PDF Listings View primary source full text article PDFs.

Mar
2015

The CRISPR/Cas9 technology enables the introduction of genomic alterations into almost any organism; however, systems for efficient and inducible gene modification have been lacking, especially for deletion of essential genes. Here, we describe a drug-inducible small guide RNA (sgRNA) vector system allowing for ubiquitous and efficient gene deletion in murine and human cells. This system mediates the efficient, temporally controlled deletion of MCL-1, both in vitro and in vivo, in human Burkitt lymphoma cell lines that require this anti-apoptotic BCL-2 protein for sustained survival and growth.

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2014

The transcriptional regulator c-MYC is abnormally overexpressed in many human cancers. Evasion from apoptosis is critical for cancer development, particularly c-MYC-driven cancers. We explored which anti-apoptotic BCL-2 family member (expressed under endogenous regulation) is essential to sustain c-MYC-driven lymphoma growth to reveal which should be targeted for cancer therapy.

View Full Text PDF Listings View primary source full text article PDFs.

Mar
2013

Epstein-Barr virus (EBV) is present in all cases of endemic Burkitt lymphoma (BL) but in few European/North American sporadic BLs. Gene expression arrays of sporadic tumors have defined a consensus BL profile within which tumors are classifiable as "molecular BL" (mBL). Where endemic BLs fall relative to this profile remains unclear, since they not only carry EBV but also display one of two different forms of virus latency.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in Raff, 1996). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in Weinberg, 2007).

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2011

Epstein-Barr virus (EBV) has been shown to encode at least 40 microRNAs (miRNAs), an important class of molecules that negatively regulate the expression of many genes through posttranscriptional mechanisms. Here, we have used real-time PCR assays to quantify the levels of EBV-encoded BHRF1 and BART miRNAs in latently infected cells and in cells induced into the lytic cycle. During latency, BHRF1 miRNAs were seen only in cells with detectable Cp- and/or Wp-initiated EBNA transcripts, while the BART miRNAs were expressed in all forms of latent infection.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
2009

Epstein-Barr virus was originally identified in the tumour cells of a Burkitt's lymphoma, and was the first virus to be associated with the pathogenesis of a human cancer. Studies on the relationship of EBV with Burkitt's lymphoma have revealed important general principles that are relevant to other virus-associated cancers. In addition, the impact of such studies on the knowledge of EBV biology has been enormous.

View Full Text PDF Listings View primary source full text article PDFs.

Mar
2009

Two factors contribute to Burkitt lymphoma (BL) pathogenesis, a chromosomal translocation leading to c-myc oncogene deregulation and infection with Epstein-Barr virus (EBV). Although the virus has B cell growth-transforming ability, this may not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc-driven growth program.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

Burkitt lymphoma (BL), a tumor occurring in endemic, sporadic and AIDS-associated forms, is the classic example of a human malignancy whose pathogenesis involves a specific cellular genetic change, namely, a chromosomal translocation deregulating expression of the c-myc oncogene, complemented in many cases by the action of an oncogenic virus, the Epstein-Barr virus (EBV). Here we review recent work in two complementary areas of research: (1) on cellular genetic changes that occur in addition to the c-myc translocation in BL, in particular the capacity of p53/ ARF pathway breakage or of c-myc mutation to decouple the pro-proliferative effects of c-myc deregulation from its pro-apoptotic effects; and (2) on a postulated role for EBV in BL pathogenesis, through adopting restricted forms of virus latent gene expression that remain compatible with the c-myc-driven growth program but offer the tumor additional protection from apoptosis. We stress the many fundamental questions that remain to be resolved and, in that regard, highlight the general lessons that might be learned through understanding how two other infectious agents, malaria and HIV, dramatically enhance BL incidence.

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2008

The Epstein-Barr virus (EBV) contributes to the growth and survival of Hodgkin lymphoma (HL) cells. Here we report that down-regulation of the transforming growth factor-beta (TGF-beta) target gene, protein tyrosine phosphatase receptor kappa (PTPRK), followed EBV infection of HL cells and was also more frequently observed in the Hodgkin and Reed-Sternberg (HRS) cells of EBV-positive compared with EBV-negative primary HL. The viability and proliferation of EBV-positive HL cells was decreased by overexpression of PTPRK, but increased following the knockdown of PTPRK expression in EBV-negative HL cells, demonstrating that PTPRK is a functional tumor suppressor in HL.

View Full Text PDF Listings View primary source full text article PDFs.

Jul
2007

The Epstein-Barr virus (EBV)-encoded leader protein, EBNA-LP, strongly activates the EBNA2-mediated transcriptional activation of cellular and viral genes and is therefore important for EBV-induced B-cell transformation. However, a truncated form of EBNA-LP is produced in cells infected with variant EBV strains lacking EBNA2 due to a genetic deletion. The function of this truncated form is unknown.

View Full Text PDF Listings View primary source full text article PDFs.

Oct
2006

Epstein-Barr virus (EBV), a human herpesvirus, transforms B cell growth in vitro through expressing six virus-coded Epstein-Barr nuclear antigens (EBNAs) and two latent membrane proteins (LMPs). In many EBV-associated tumors, however, viral antigen expression is more restricted, and the aetiological role of the virus is unclear. For example, endemic Burkitt lymphoma (BL) classically presents as a monoclonal, c-myc-translocation-positive tumor in which every cell carries EBV as an EBNA1-only (Latency I) infection; such homogeneity among EBV-positive cells, and the lack of EBV-negative comparators, hampers attempts to understand EBV's role in BL pathogenesis.

View Full Text PDF Listings View primary source full text article PDFs.

Oct
2006

Studies of Epstein-Barr virus (EBV)-positive cell lines have identified several forms of virus latency, but the patterns of virus gene expression in EBV-positive tumour cells appear more variable. However, it is unclear to what extent these differences merely reflect the increased sensitivities of different detection methods. Here, the design and validation of novel real-time RT-PCR assays to quantify relative levels of EBV transcripts are described.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2006

The Epstein-Barr virus (EBV) latent cycle promoter Wp, present in each tandemly arrayed copy of the BamHI W region in the EBV genome, drives expression of the EB viral nuclear antigens (EBNAs) at the initiation of virus-induced B-cell transformation. Thereafter, an alternative EBNA promoter, Cp, becomes dominant, Wp activity declines dramatically, and bisulfite sequencing of EBV-transformed lymphoblastoid cell lines (LCLs) shows extensive Wp methylation. Despite this, Wp is never completely silenced in LCLs.

View Full Text PDF Listings View primary source full text article PDFs.

Aug
2005

Most Epstein-Barr virus (EBV)-positive Burkitt's lymphomas (BLs) carry a wild-type EBV genome and express EBV nuclear antigen 1 (EBNA1) selectively from the BamHI Q promoter (latency I). Recently we identified a distinct subset of BLs carrying both wild-type and EBNA2 gene-deleted (transformation-defective) viral genomes. The cells displayed an atypical "BamHI W promoter (Wp)-restricted" form of latency where Wp (rather than Qp) was active and EBNA1, -3A, -3B, -3C, and -LP were expressed in the absence of EBNA2 or latent membrane proteins 1 and 2.

View Full Text PDF Listings View primary source full text article PDFs.

Back to top