Helping You Find Full Text Journal Articles

Search Results:

Author: Janina I Schweiger (5)


Sep
2017

The rs1625579 variant near the microRNA-137 (MIR137) gene is one of the best-supported schizophrenia variants in genome-wide association studies (GWAS), and microRNA-137 functionally regulates other GWAS identified schizophrenia risk variants. Schizophrenia patients with the MIR137 rs1625579 risk genotype (homozygous for the schizophrenia risk variant) also have aberrant brain structure. It is unclear if the effect of MIR137 among schizophrenia patients is due to potential epistasis with genetic risk for schizophrenia or other factors of the disorder.

View Full Text PDF Listings View primary source full text article PDFs.

Jul
2017

Imbalances in cortico-limbic activity and functional connectivity (FC) supposedly underlie biased emotional processing and present putative intermediate phenotypes (IPs) for major depressive disorder (MDD). To prove the validity of these IPs, we assessed them in familial risk. In 70 healthy first-degree relatives of MDD patients and 70 controls, brain activity and seed-based amygdala FC were assessed during an implicit emotional processing task for fMRI containing angry and fearful faces.

View Full Text PDF Listings View primary source full text article PDFs.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2016

Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation-inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2015

The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of "dynamic network neuroscience" to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the "n-back" task).

View Full Text PDF Listings View primary source full text article PDFs.

Back to top