Helping You Find Full Text Journal Articles

Search Results:

Author: Kenneth K W To (49)


Mar
2018

We aimed to develop novel drug combination strategy to overcome drug resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) in the treatment of non-small cell lung cancer (NSCLC). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor, which upon activation upregulates phosphatase and tensin homolog (PTEN) to inhibit cell signaling downstream of PI3K to mediate apoptosis. To this end, PTEN loss is a known mechanism contributing to resistance to EGFR TKIs.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2018

Platinum (Pt)-based anticancer drugs are the mainstay of treatment for solid cancers. However, resistance to Pt drugs develops rapidly, which can be caused by overexpression of multidrug resistance transporters and activation of DNA repair. CUDC-907 is a potent molecular targeted anticancer agent, rationally designed to simultaneously inhibit histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K).

View Full Text PDF Listings View primary source full text article PDFs.

Oct
2017

The discovery of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) has led to unprecedented clinical response in a subset of lung cancer patients carrying the sensitizing EGFR mutations (L858R or exon 19 deletion). However, disease progression invariably occurs within a year after the initial TKI treatment, predominantly due to the development of acquired resistance caused by the secondary EGFR T790 M mutation. Numerous second generation irreversible and third generation EGFR T790 M selective EGFR TKIs have been developed to overcome resistance.

View Full Text PDF Listings View primary source full text article PDFs.

May
2017

Multidrug resistance (MDR) of cancer is often associated with the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated protein-1 (MRP-1) and breast cancer resistance protein (BCRP or ABCG2), in cancer cells, which facilitates the active efflux of a wide variety of chemotherapeutic drugs out of the cells. Marsdenia tenacissima is a traditional Chinese medicinal herb that has long been clinically used for treatment of cancers, particularly in combinational use with anticancer drugs. Polyoxypregnanes (POPs) are identified as main constituents of this herb, and three of them have been reported to exhibit P-gp modulatory effect and thus reverse MDR.

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2017

Multidrug resistance (MDR) is the major obstacle of the success in cancer chemotherapy. The overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1 and ABCG2, play a significant role in mediating MDR by pumping anticancer drugs out of cancer cells. Abemaciclib (LY2835219) is an orally bioavailable CDK4/6 inhibitor under phase III clinical trials.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
2016

The ATP-binding cassette transporter G2 (ABCG2) plays an important role in the disposition of rosuvastatin. Telmisartan, a selective angiotension-II type 1 (AT1) receptor blocker, inhibits the transport capacity of ABCG2, which may result in drug interactions. This study investigated the pharmacokinetic interaction between rosuvastatin and telmisartan and the potential mechanism.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2017

Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. The majority of studies to date focused on genetic mutations and epigenetic changes that drive the CRC carcinogenesis process. Xenobiotic transporters play an important role in safeguarding our body from external toxic substances.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage).

View Full Text PDF Listings View primary source full text article PDFs.

Jun
2016

We have recently reported that vatalanib, an orally active small molecule multi-tyrosine kinase inhibitor (Hess-Stumpp et al., 2005 [1]), can sensitize multidrug resistant (MDR) colon cancer cells to chemotherapy under hypoxia by inhibiting two MDR transporters ABCB1 and ABCG2 (To et al., 2015 [2]).

View Full Text PDF Listings View primary source full text article PDFs.

Apr
2016

The objective of this study was to fabricate dasatinib-loaded nanoparticles and evaluate their efficacy in inhibiting cellular processes of the retinal pigment epithelium (RPE) related to proliferative vitreoretinopathy (PVR), for which there are no approved pharmacological approaches. We successfully encapsulated dasatinib, a poorly soluble multi-targeted tyrosine kinase inhibitor which has great potential for the treatment of PVR, into nanoparticles prepared from micellation of PEG-b-PCL. The size of the nanomicelles was approximately 55nm with a narrow distribution.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
2015

Imatinib, a multitargeted tyrosine kinase inhibitor, exhibits potent anticancer activity against leukemia harboring the Bcr-Abl oncogene and some solid tumors overexpressing c-kit and PDGFR. However, its clinical efficacy is severely compromised by the emergence of resistance primarily due to acquired mutations in the Bcr-Abl kinase domain. In this study, we showed that combination of imatinib with platinum (Pt)-based anticancer agents, including cisplatin and oxaliplatin, exhibited synergistic cytotoxic effect specifically in Bcr-Abl+ human chronic myeloid leukemia cell line K562 but not in Bcr-Abl- RPMI8226 cells.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
2015

Multidrug resistance (MDR) is the leading cause of treatment failure in cancer chemotherapy. The overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1, ABCC1 and ABCG2, play a key role in mediating MDR by pumping anticancer drugs out from cancer cells. Ceritinib (LDK378) is a second-generation tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) currently in phase III clinical trial for the treatment of non-small cell lung cancer.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2015

Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. While surgery remains the mainstay of treatment for early stage CRC, adjuvant chemotherapy is usually given to reduce the risk of recurrence after colectomy. Overexpression of a multidrug resistance (MDR) transporter ABCG2 in vitro has been shown to cause resistance to 5-fluorouracil (5-FU) and irinotecan, components of the most commonly adopted regimens for treating CRC.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2015

Cancer microenvironment is characterized by significantly lower oxygen concentration. This hypoxic condition is known to reduce drug responsiveness to cancer chemotherapy via multiple mechanisms, among which the upregulation of the ATP-binding cassette (ABC) efflux transporters confers resistance to a wide variety of structurally unrelated anticancer drugs. Vatalanib (PTK787/ZK22584) is a multitargeted tyrosine kinase inhibitor for all isoforms of VEGFR, PDGFR and c-Kit, which exhibit potent anticancer activity in vitro and in vivo.

View Full Text PDF Listings View primary source full text article PDFs.

Aug
2015

With an aim to generate non-toxic, specific and highly potent multidrug resistance (MDR) modulators, a novel series of anthranilic acid amide-substituted tariquidar derivatives were synthesized. The new compounds were evaluated for their cytotoxicity toward normal human colon fibroblasts (CCD18-Co), human gastric epithelial cell line (HFE) and primary rat liver cells, and for their ability to inhibit P-gp/BCRP-mediated drug efflux and reversal of P-gp and BCRP-mediated MDR in parental and drug-resistant cancer cell lines (LCC6 MDR1, MCF-7 FLV1000, R-HepG2, SW620-Ad300). While tariquidar is highly toxic to normal cells, the new derivatives exhibited much lower or negligible cytotoxicity.

View Full Text PDF Listings View primary source full text article PDFs.

Jun
2015

The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs).

View Full Text PDF Listings View primary source full text article PDFs.

Aug
2015

Pelitinib is a potent irreversible EGFR TK inhibitor currently in clinical trials for the treatment of lung cancer. Hyperthermia has been applied concomitantly with chemotherapy and radiotherapy to enhance treatment outcome. In this study, we investigated the ability of the combination of pelitinib with other conventional anticancer drugs to specifically target cancer cells with up-regulated efflux transporters ABCB1/ABCG2 after hyperthermia as a novel way to eradicate the cancer stem-like cells responsible for cancer recurrence.

View Full Text PDF Listings View primary source full text article PDFs.

May
2015

Multidrug resistance (MDR) develops in nearly all patients with colon cancer. The reversal of MDR plays an important role in the success of colon cancer chemotherapy. One of the commonest mechanisms conferring MDR is the suppression of apoptosis in cancer cells.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2014

Multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR.

View Full Text PDF Listings View primary source full text article PDFs.

Jun
2014

This study investigated whether cholesterol levels influence the expression and function of drug transporters and whether statin treatments could alter this by reducing plasma low-density lipoprotein cholesterol levels.
The mRNA expression and function of OATP1B1, ABCB1 and ABCG2 were assessed in peripheral blood mononuclear cells (PBMCs) of healthy subjects and from patients with familial hypercholesterolemia (FH) before and after statin treatment by real-time PCR and flow cytometric assay, respectively. The effects of statin exposure and cholesterol depletion in PBMCs and in cell lines were assessed.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
2013

Multidrug resistance (MDR) is a major obstacle to successful cancer treatment. It is often associated with an increased efflux of a variety of structurally unrelated anticancer drugs by ATP-binding cassette (ABC) transporters including P-gp, ABCG2 and MRP1. MicroRNAs (miRNAs) are small non-coding RNAs that govern posttranscriptional regulation of target genes by interacting with specific sequences in their 3' untranslated region (3'UTR), thereby promoting mRNA degradation or suppressing translation.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2013

Multidrug resistance (MDR), usually mediated by overexpression of efflux transporters such as P-gp, ABCG2 and/or MRP1, remains a major obstacle hindering successful cancer chemotherapy. There has been great interest in the development of inhibitors towards these transporters to circumvent resistance. However, since the inhibition of transporter is not specific to cancer cells, a decrease in the cytotoxic drug dosing may be needed to prevent excess toxicity, thus undermining the potential benefit brought about by a drug efflux inhibitor.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

Protein-protein interaction is an essential biochemical event that mediates various cellular processes including gene expression, intracellular signaling, and intercellular interaction. Understanding such interaction is key to the elucidation of mechanisms of cellular processes in biology and diseases. The hypoxia-inducible transcription factor HIF-1α possesses a non-transcriptional activity that competes with c-Myc for Sp1 binding, whereas its isoform HIF-2α lacks Sp1-binding activity due to phosphorylation.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2013

Multidrug resistance (MDR) of cancer cells to a wide spectrum of anticancer drugs is a major obstacle to successful chemotherapy. It is usually mediated by the overexpression of one of the three major ABC transporters actively pumping cytotoxic drugs out of the cells. There has been great interest in the search for inhibitors toward these transporters with an aim to circumvent resistance.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2013

The stromal cell-derived factor-1α SDF-1α (CXCL12)/CXCR4 axis has been linked to poor prognosis in some cancers. As histone deacetylase inhibitors (HDIs) exert antitumor effects by targeting proteins affecting cell migration, we sought to evaluate the effects of the HDIs apicidin, vorinostat, entinostat (MS-275) and romidepsin on the expression and function of CXCR4 in human cancer cell lines. After treatment with romidepsin, CXCR4 mRNA expression increased 12-fold in UOK121 renal cancer cells, 16-fold in H460 non-small cell cancer cells and 4-fold in SF295 glioma cells; treatment with other HDIs yielded similar effects.

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2013

Development of antiandrogen-resistance in advanced prostate cancer involves multiple androgen receptor (AR)-dependent and -independent pathways. Here, we demonstrated that endothelial nitric oxide synthase (eNOS) exhibited an overexpression pattern in hormone-refractory prostate cancer and several models of advanced hormone-resistant prostate cancer. We further established a novel in vitro model of antiandrogen-resistant prostate cancer (LNCaP-BC) by long-term bicalutamide treatment.

View Full Text PDF Listings View primary source full text article PDFs.

Dec
1969

ABCG2 is an efflux transporter commonly found to overexpress in multidrug resistant (MDR) cancer cells. It is also believed to be a survival factor for cancer stem cells to drive tumor growth. Tumor microenvironment represents an attractive new drug target because it allows complex interaction between a tumor and its surrounding normal cells, molecules, and blood vessels, which all participate in tumor progression.

View Full Text PDF Listings View primary source full text article PDFs.

Mar
2012

The lack of selectivity and adequate potency of currently known P-glycoprotein (P-gp) inhibitors obscured their further development for clinical use to circumvent P-gp-mediated multidrug resistance (MDR), which necessitates the investigation of novel ones with higher potency and better specificity. The present study investigated the reversal effect of a new synthetic α-aminoxy lysine-peptidomimetic (Lys-P) on P-gp-mediated MDR. Effects of Lys-P on cytotoxicity of P-gp substrate doxorubicin (Dox) and intracellular accumulation of another P-gp substrate rhodamine 123 were examined in HEK293 cells.

View Full Text PDF Listings View primary source full text article PDFs.

Jun
2012

Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that is generally not responding to chemotherapy. It is particularly predominant in China. Although ESCC is significantly associated with cigarette smoking, the relationship between its molecular pathogenesis and responsiveness to chemotherapy and cigarette smoke remains elusive.

View Full Text PDF Listings View primary source full text article PDFs.

Apr
2011

Histone deacetylase inhibitors (HDACI) are promising anticancer agents and their use in combination with conventional anticancer drugs is currently under investigation. We previously reported cell line-specific upregulation of ABCG2, a multidrug resistance transporter shown to control oral bioavailability and CNS penetration, by the HDACI romidepsin, although the precise mechanism in a particular cell line remains to be determined. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by numerous environmental contaminants and has been shown to be a client protein of heat shock protein 90 (Hsp90).

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2011

The ABCG2 efflux transporter is expressed in multiple tissues and plays an important role in the disposition of many statins. The functional 421C>A polymorphism in ABCG2 that reduces transporter activity has been found to be associated with increased systemic exposures to certain statins.
We review and evaluate the associations of the ABCG2 polymorphism on the pharmacokinetics and clinical efficacy of statins.

View Full Text PDF Listings View primary source full text article PDFs.

Oct
2009

Overexpression of ABCG2 has been reported in cell lines selected for drug resistance and it is widely believed to be important in the clinical pharmacology of anticancer drugs. We and others have previously identified and validated two microRNAs (miRNA; hsa-miR-519c and hsa-miR-520h) targeting ABCG2. In this study, the shortening of the ABCG2 3' untranslated region (3'UTR) was found to be a common phenomenon in several ABCG2-overexpressing resistant cell lines, which as a result removes the hsa-miR-519c binding site and its repressive effects on mRNA stability and translation blockade, thereby contributing to drug resistance.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2008

ABCG2 is recognized as an important efflux transporter in clinical pharmacology and is potentially important in resistance to chemotherapeutic drugs. To identify epigenetic mechanisms regulating ABCG2 mRNA expression at its 3' untranslated region (3'UTR), we performed 3' rapid amplification of cDNA ends with the S1 parental colon cancer cell line and its drug-resistant ABCG2-overexpressing counterpart. We found that the 3'UTR is >1,500 bp longer in parental cells and, using the miRBase TARGETs database, identified a putative microRNA (miRNA) binding site, distinct from the recently reported hsa-miR520h site, in the portion of the 3'UTR missing from ABCG2 mRNA in the resistant cells.

View Full Text PDF Listings View primary source full text article PDFs.

Jan
2008

ABCG2 is a ubiquitous ATP-binding cassette transmembrane protein that is important in pharmacology and may play a role in stem cell biology and clinical drug resistance. To study the mechanism(s) regulating ABCG2 expression, we used ChIP to investigate the levels of acetylated histone H3, histone deacetylases (HDAC), histone acetyltransferases, and other transcription regulatory proteins associated with the ABCG2 promoter. Following selection for drug resistance and the subsequent overexpression of ABCG2, an increase in acetylated histone H3 but a decrease in class I HDACs associated with the ABCG2 promoter was observed.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2008

Homocamptothecins (hCPTs) are a novel class of topoisomerase I (Top1) inhibitors with enhanced chemical stability compared with the currently used camptothecin (CPT) analogs irinotecan and topotecan. The hCPT derivative diflomotecan (BN80915) is currently in clinical trials. We established two resistant human glioblastoma cell lines, SF295/hCPT50 and SF295/BN50, by stepwise exposure of the parental SF295 line to increasing concentrations of hCPT and BN80915, respectively.

View Full Text PDF Listings View primary source full text article PDFs.

Aug
2007

Hypoxia, a key microenvironmental factor for tumor development, not only stimulates angiogenesis and glycolysis for tumor expansion, but also induces cell cycle arrest and genetic instability for tumor progression. Several independent studies have shown hypoxic blockade of cell cycle progression at the G1/S transition, arising from the inactivation of S-phase-promoting cyclin E-CDK2 kinase complex. Despite these findings, the biochemical pathways leading to the cell cycle arrest remain poorly defined.

View Full Text PDF Listings View primary source full text article PDFs.

Oct
2006

Hypoxia promotes genetic instability for tumor progression. Recent evidence indicates that the transcription factor HIF-1alpha impairs DNA mismatch repair, yet the role of HIF-1alpha isoform, HIF-2alpha, in tumor progression remains obscure. In pursuit of the involvement of HIF-alpha in chromosomal instability, we report here that HIF-1alpha, specifically its PAS-B, induces DNA double-strand breaks at least in part by repressing the expression of NBS1, a crucial DNA repair gene constituting the MRE11A-RAD50-NBS1 complex.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2006

ABCG2 is a ubiquitous ATP-binding cassette transmembrane protein that is important in clinical drug resistance. Little is known about the mechanism(s) regulating the expression of ABCG2. We hypothesized that DNA methylation could play a role in the epigenetic regulation of ABCG2 gene expression.

View Full Text PDF Listings View primary source full text article PDFs.

Jul
2006

A series of novel traditional Chinese medicine-platinum compounds has been found to be active against a number of murine and human cancers both in vitro and in vivo. Their high potency and the lack of cisplatin cross-resistance are believed to be due to the inclusion of the protein phosphatase 2A-inhibiting demethylcantharidin in the novel structures. A simple reversed-phase high-performance liquid chromatographic method was developed and validated as a stability-indicating assay for the platinum compounds.

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2005

The cellular response to hypoxia is, at least in part, mediated by the transcriptional regulation of hypoxia-responsive genes involved in balancing the intracellular ATP production and consumption. Recent evidence suggests that the transcription factor, HIF-1alpha, functions as a master regulator of oxygen homeostasis by controlling a broad range of cellular events in hypoxia. In normoxia, HIF-1alpha is targeted for destruction via prolyl hydroxylation, an oxygen-dependent modification that signals for recognition by the ubiquitin ligase complex containing the von Hippel-Lindau tumor suppressor.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2005

Protein phosphatase 2A (PP2A) is a new target for platinum (Pt)-based cancer chemotherapeutic agents. A series of novel Pt complexes containing demethylcantharidin, a modified component of a traditional Chinese medicine (TCM), [Pt(C8H8O5)(NH2R)2] 1-5 have been shown to inhibit PP2A both in its purified form and in cell homogenates. In this study, the potential efficacy of compounds 1-5 in suppressing the growth of PP2A-highly expressed liver cancer was evaluated.

View Full Text PDF Listings View primary source full text article PDFs.

Jul
2005

Under low oxygen tension, the activated transcription factor HIF-1alpha upregulates an array of hypoxia-inducible genes via heterodimerization with ARNT and binding to the hypoxia-responsive element in the promoter. Alternatively, HIF-1alpha regulates hypoxia-responsive genes by functionally antagonizing the oncoprotein Myc via protein-protein interactions. This so-called HIF-1alpha-Myc mechanism apparently not only accounts for the gene upregulation, but also for the gene downregulation during hypoxia, depending upon the activating and repressive nature of Myc in gene expression.

View Full Text PDF Listings View primary source full text article PDFs.

Jun
2005

A novel series of TCM-platinum complexes [Pt(C8H8O5)(NH2R)2] 1-5, designed from incorporating demethylcantharidin, a modified component from a traditional Chinese medicine (TCM) with a platinum moiety was found to circumvent cisplatin resistance in mouse leukemia and human hepatocellular carcinoma. These properties are most likely due to the inclusion of the protein phosphatase 2A (PP2A)-inhibiting demethylcantharidin in the novel compounds. We have investigated the potential synergistic effect of combining demethylcantharidin with a platinum-based antitumor agent, such as cisplatin, carboplatin, or oxaliplatin in vitro against L1210 mouse leukemia and SK-Hep-1 human hepatocellular carcinoma, and in vivo against a SK-Hep-1 subcutaneous-inoculated xenograft in nude mice, using median effect analysis.

View Full Text PDF Listings View primary source full text article PDFs.

Mar
2005

Hypoxia promotes genetic instability by undefined mechanisms. The transcription factor HIF-1alpha is crucial for the cellular response to hypoxia and is frequently overexpressed in human cancers, resulting in the activation of genes essential for cell survival. Here, we demonstrate that HIF-1alpha is responsible for genetic instability at the nucleotide level by inhibiting MSH2 and MSH6, thereby decreasing levels of the MSH2-MSH6 complex, MutSalpha, which recognizes base mismatches.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2004

Novel TCM-platinum compounds [Pt(C(8)H(8)O(5))(NH(2)R)(2)] 1-5, derived from integrating demethylcantharidin, a modified component from a traditional Chinese medicine (TCM) with a platinum moiety, possess anticancer and protein phosphatase 2A inhibition properties. The compounds are able to circumvent cisplatin resistance by apparently targeting the DNA repair mechanism. Novel isosteric analogues [Pt(C(9)H(10)O(4))(NH(2)R)(2)] A and B, devoid of PP2A-inhibitory activity, were found to suffer from an enhanced DNA repair and were cross-resistant to cisplatin.

View Full Text PDF Listings View primary source full text article PDFs.

Jun
2004

Hypoxia-inducible factor (HIF)-1alpha, a master regulator of oxygen homeostasis, regulates genes crucial for cell growth and survival. In normoxia, HIF-1alpha is constantly degraded via the ubiquitin-proteasome pathway. The von Hippel-Lindau (VHL) E3 ubiquitin ligase binds HIF-1alpha through specific recognition of hydroxylated Pro-402 or Pro-564, both of which are modified by the oxygen-dependent HIF prolyl hydroxylases (PHDs/HPHs).

View Full Text PDF Listings View primary source full text article PDFs.

Nov
2003

Human CNT3 encodes the concentrative nucleoside transport N3 system. Previous expression studies in oocytes showed that the Km values for nucleosides of the cloned hCNT3 were 7- to 25-fold lower than the endogenous N3 transporter in HL60 cells. Therefore, in the present study we re-examined the kinetic properties of the cloned hCNT3 using mammalian cell expression systems by transient expression in Cos7L cells and stably expression in nucleoside transporter deficient PK15NTD cells.

View Full Text PDF Listings View primary source full text article PDFs.

Sep
2003

The impact of cisplatin on cancer chemotherapy cannot be denied. Over the past 20 years, much effort has been dedicated to discover new platinum-based anticancer agents that are superior to cisplatin or its analogue, carboplatin. Most structural modifications are based on changing one or both of the ligand types coordinated to platinum.

View Full Text PDF Listings View primary source full text article PDFs.

Feb
2002

The present paper describes the development of a simple, accurate and reproducible gas chromatographic method for the determination of hydrolyzed demethylcantharidin release from a novel series of traditional Chinese medicine (TCM)-platinum compounds possessing potent anticancer and protein phosphatase 2A (PP2A)-inhibition properties. The salient features of the validated assay were a limit of detection (LOD) of 2 microg/mL, a limit of quantitation (LOQ) of 6 microg/mL, an intra- and inter-day precision of less than 11%, and an accuracy of more than 92%. The developed GC-flame ionization detection (FID) method was successfully utilized for the analysis of hydrolyzed demethylcantharidin, the TCM component that is slowly released from the novel compounds over 24 h, leading to PP2A inhibition.

View Full Text PDF Listings View primary source full text article PDFs.

Back to top