Helping You Find Full Text Journal Articles

Search Results:

Author: Wing-Yin Yung (2)


Alkyl groups (CH) are prevalent in engineered bionanomaterials used for many intracellular applications, yet how alkyl groups dictate the interactions between nanoparticles and mammalian cells remains incomprehensively investigated. In this work, we report the effect of alkylation on the cellular uptake of densely polyethylene glycol-coated nanoparticles, which are characterized by their limited entry into mammalian cells. Specifically, we prepare densely PEGylated gold nanoparticles that bear alkyl chains of varying carbon chain lengths (n) and loading densities (termed "alkyl-PEG-AuNPs"), followed by investigating their uptake by Kera-308 keratinocytes.

View Full Text PDF Listings View primary source full text article PDFs.


Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR.

View Full Text PDF Listings View primary source full text article PDFs.

Back to top